Tuesday, August 28, 2018

Effect of Molecular Weight on Electro Spun Pcl Based Composite Fibrous Mats by TS Sampath Kumar in BJSTR

Abstract

Controlling the biodegradation of scaffolds to tune with that of the growing tissue is crucial for tissue regeneration. Although molecular weight of a polymer is known to influence its degradation, such studies have not been reported for electrospun Polycaprolactone (PCL) based composite scaffolds. In the present study, two low molecular weight PCL, 10 and 45 kDa PCL (10PCL and 45PCL) have been analyzed for their electrospun ability and biodegradation in comparison with 80 kDa PCL (80PCL) in forming pure polymeric and hydroxyapatite composite nanofibrous mats. The 45PCL and 80PCL were electro spin able but the 10PCL resulted in electro spraying of particles. However, 45PCL needed a higher concentration (20 wt.%) of polymer than the 80PCL (8 wt.%) in order to electrospin bead free uniform fibres. The fibres obtained were in the diameter range of 310±50 nm and 400±100 nm for the 45PCL and 45PCL/HA composite mats respectively. The Hydroxyapatite (HA) incorporation in the composites was confirmed through X-ray diffraction and spectroscopic methods. The 45PCL/HA composite degrades at a relatively faster rate than the 80PCL/HA composite. The electrospun mats were also found to be non cytotoxic (Live/Dead assay), commendable cellular metabolic activity (MTT assay) and good proliferation of osteoblast like cells (HOS) as evidenced through fluorescent and scanning electron microscopy. This work demonstrated the feasibility of fabricating PCL based electrospun composite scaffolds having controlled degradation rates.



No comments:

Post a Comment

Note: Only a member of this blog may post a comment.

Does Access to Remittance Improve Welfare Status of Households in Nigeria?

  Does Access to Remittance Improve Welfare Status of Households in Nigeria? Introduction Remittance is defined as the proportion of migrant...